letters to nature

Room-temperature ferroelectricity in strained SrTiO₃ Nature 430, 758 (2004).

J. H. Haeni¹, P. Irvin², W. Chang³, R. Uecker⁴, P. Reiche⁴, Y. L. Li¹, S. Choudhury¹, W. Tian⁵, M. E. Hawley⁶, B. Craigo⁷, A. K. Tagantsev⁸, X. Q. Pan⁵, S. K. Streiffer⁹, L. Q. Chen¹, S. W. Kirchoefer³, J. Levy² & D. G. Schlom¹

NSF-DMR 0103354 + 0333192 + 0122638

For a variety of microwave devices a material is needed whose dielectric constant (ε_r) at microwave frequencies may be tuned. SrTiO₃ has been recognized for decades to be a promising material for these applications, but only at cryogenic temperatures. Through strain-engineering, we have achieved high ε_r and tunability at room temperature in SrTiO₃ films with properties comparable to bulk SrTiO₃ at cryogenic temperatures. This was achieved by applying enormous strains—strains far larger than can be applied to bulk single crystals—to thin single crystal films of SrTiO₃ using a newly developed substrate, DyScO₃.

¹Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802-5005, USA

²Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

NIRT K-12 Educational Outreach WINDOWS ON THE MICROSCOPIC WORLD OF MATERIALS

NIRT Schlom 0103354

Buckeyball Break at University of Michigan

A group photograph from their lunch break; that is why not everyone has a Buckyball yet. From the Outreach Effort:

WINDOWS ON THE MICROSCOPIC WORLD OF MATERIALS